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Noise suppression and spectral decomposition for state-dependent noise in the presence
of a stationary fluctuating input
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It recently has been shown that the observed noise amplitude of an intrinsically noisy system may be reduced
by causing the underlying state to fluctu@le M. G. Vilar and J. M. Rubi, Phys. Rev. Le®6, 950 (200J)].
This paper extends the previous theory by considering the full power spectrum of the output signal, interpreting
noise reduction in terms of the low-frequency end of the spectrum as well as the integrated spectrum. Our
treatment accounts for arbitrarily sized fluctuations and deals with both continuous and discretely sampled
observations. We show that noise suppression is possible if and only if the stationary average of the intensity
of state-dependent noise decreases. We apply our analysis to an example involving saturable electrical con-
duction discussed in the original paper by Vilar and Rubi.
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[. INTRODUCTION tuations. We also adapt the original model to account for
discretely sampled observations. The overall fluctuations in
Although noise is generally considered a nuisance, it3he output signal naturally decouple into contributions aris-
constructive properties have become increasingly clear in réing from the intrinsic noise as well as the changing input. We
cent years as it plays essential roles in many fundamentahke advantage of this decomposition to compute the spectral
processes, particularly in biology. For example, biologicalpower from these two contributions separately. A conse-
motion by motor proteins requires the presence of thermauence of this result is that noise suppression, which corre-
fluctuations[1,2]. Furthermore, the response of sensory syssponds to a decrease in the spectral power of the signal at
tems can be enhanced through the interactions of noise andegther specific frequencies or over a range of frequencies,
weak driving signal leading to stochastic resonaf@e5].  will only occur if the average intensity of intrinsic noise
Neuron firing patterns have been experimentally observed tgecreases.
be more consistent for signals with noisy characteristics than The paper is organized as follows. First, we provide a
for flat pulseg6]. Additionally, some excitable systems may formal description of the model describing the input and out-
achieve more order in the presence of noise, even in thgut signals and introduce the appropriate quantitative mea-
absence of an external signal, such as in the phenomenon ffires of noise. Next, we consider the power spectrum for the
coherence resonance where an optimal level of noise leads gutput signal, showing that it decomposes into a white com-
regular excursions from the ground std@. Recently, an- ponent corresponding to the average intensity of intrinsic
other beneficial aspect of noise has come to light: the addinoise plus the spectrum characterizing the output signal in
tion of noise at a signal input may lead to a reduction ofthe absence of intrinsic noise. We further demonstrate an
noise levels at the signal outp[g]. explicit approach to determining this profile using an eigen-
In their paper[8], Vilar and Rubi consider the effect of mode expansion involving Hermite polynomials. Third, we
adding fluctuations to the input of a system where the intrindiscuss the possibility of noise suppression in the context of
sically noisy output signal depends on the input signal. Inthis spectral decomposition. Subsequently, we apply the
particular, they propose a model where, for a steady inputechniques to one of the examples originally provided by
the rapid fluctuations in the output signal due to intrinsicvilar and Rubi. We conclude by commenting on the basic
noise are essentially white, with an intensity that depends omechanism required for noise suppression.
the particular input signal. Assuming that the autocorrelation
time of the noise added at the input is short compared to Il. MODEL DESCRIPTION
times of interest, the output signal has a spectrum that re-
mains essentially white over the low frequencies of interest. The system under consideration essentially models an ob-
Vilar and Rubi demonstrate that the spectral intensity of theserved signal that is regulated by an underlying satéhich
output noise at these low frequencies can be reduced by addeuld represent either an unobserved, internal dynamic vari-
ing fluctuations at the input of the system. They also give able or an external, controlled input signal. The output signal
sufficient condition for such a reduction when the addedy will be intrinsically noisy in that there will be uncorrelated
fluctuations at the input are kept sufficiently small. fluctuations for every state of the input. We seek a model that
In this paper, we provide a more complete mathematicataptures the following properties. First, the output signal re-
basis for the phenomenon of noise suppression in such laxes rapidly to an essentially stationary process that depends
system. In particular, we provide a framework for predictingon the current value of the input signal, characterized by a
the power spectral density for arbitrary scales of input fluc-mean signal level and by the intensity of the intrinsic, uncor-
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related noise. We idealize this relaxation by assumingYhat sity of output noise for that state. If the staXeremains
instantaneously reflects the current stét&econd, the input  constant(c?=0), thenY has an autocovariance given by
signal will correspond to a stationary Gaussian process
whose autocorrelation decays exponentially in time. (Yi=HX)I[Ys - HX)) = GX) &t - 5), (9)

Let X; and Y, represent the values of the signals at theexpressed in terms of the covariance inten&tX)=g2(X).
time t. The input signalX; is modeled as a stationary, con- e remark that mathematically, the white-noise procgss
tinuous Gaussian process with megy) varianceo?, and  gpqg consequentlyy, are not well-defined stochastic pro-
autocorrelation timer. For a finite, arbitrary collection of cegses; but in fact should be expressed as stochastic differ-
times,t; <t;<--- <ty the distribution ofX; is characterized  gntials[9]. The white noise; corresponds to the differential

by the density of a Wiener process and, corresponds to the differential of
n a diffusion with state-dependent infinitesimal d#f{X) and
Dt Xe 1 X0} - itnaXn) = (X15 X0, 0D T (x5, 09), variance G(X). Nevertheless, the formal expressions given
1=2 above will suffice for this paper. In the discretely sampled

(1) case, we introduce the discrete white-noise pro¢egs an
o . independent and identically distributed sequence of Gaussian
where the individual factors are expressed in terms of theandom variables each with zero mean and unit variance,

densities of Gaussian random variables with means which is independent of the state procd¥s}, so that we
lLl = XO + (Xl—]_ _ Xo)e_(tl_tl_l)/r (2) ma.y erte
and variances Y= H(Xy) + B(X) e (10
o2 = g¥(1 - 20l ) We remark that the variancg?(X) arising from the

sampled case may or may not be related to an underlying
through the parametrized density for a Gaussian randoroontinuous intensitys(X). If we integrate the observatioyy

variable with mearu and variances?, over an interval of duratiort which is short compared to

2 the autocorrelation time, then X; remains essentially un-

1 (X= ) . .
X, 7P) = expl - 5 (4) changed over that interval and we may approximate
\5277772 277 t+At
The autocovariance of, is given by yy(u) as f Ysds= H(X)At + g(X) AWy, (1)
t
Yx(U) = (KXo = 02747, (5)  whereAW,, is a Gaussian random variable with mean zero

hereX = h q q and variance\t. Dividing both sides of this by the interval
whereX;=X;~X, represents the centered state, and averagegq ation At, we average the signal. That is, the discretely

are with respect to the given distribution. This process i ; ;
. > : ampled sequence generated by averaging the continuous
equivalent to the Ornstein-Uhlenbeck velocity procggls signgl d ¢ y ging

but with a shifted mean. For discretely sampled observations

of the output, we define observation timggs=kAt; k= 0} in 1 (%
terms of the sampling intervalt, and for notational simplic- Y= Eft
ity write X=X, andY,=Y, . In this case, we naturally define
the autocorrelatiop=e™!", and the sequend,} becomes would be well approximated by
a simple autoregressive procegsdten written AR1)] with

Y, dt (12)

k-1

autocorrelatiorp and variances? [10], which has a corre- Y =~ H(Xy) +g(xk)ALAtk_ (13)
sponding discrete autocovariance functigp,(p) for lag p At
as

In order for the variance of the noise term of this approxi-
_ XX _ 2 ol mation to match the discretely sampled model given in Eq.
YX,A(p) <kak+p> 0'29 . (6) (10), we must have
Settingo?=0 corresponds to a constant input signal. 1
The observation proces§ will be a function of the state BAX) = —G(X). (14)
At

X; with additive state-dependent white-noise so that we write

Y= H(X) + g(X)&. (7) The essential property for associating the discrete noise vari-
. ] _ance with the continuous noise intensity is that averaging the
The procesg; represents a standard continuous-time white<jgnal accumulates error over the entire intertlat an
noise process that is independent of the input progess approximately constant ra®(X,). If, however, the discrete
having zero meaxé)=0, and autocovariance observation results from a single observation occurring at the
— ot end of the sampling interval, the intrinsic noise results either
(EDEE) = ot -9). ® from a brief accumulation of error related to the time to
The functionH(X) represents the mean output signal for amake the observation or else from other sources of error. In
given stateX, while the functiong(X) establishes the inten- both cases, the discrete scale of ng#€X) becomes inde-
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pendent of the time between samplas, so that a relation- W=y 19
ship betweeng4(X) and some3(X) through Eq.(14) would WU = (VY- (19
not hold. _ _ o _ By writing H(x)=H(x) —H,, we can explicitly see the contri-

The asymptotic suppression of noise discussed inBf. y\iong arising from the white noise and from the fluctua-
refers to a decrease in the spectral intensity at low frequerﬁons in the input

cies. To be explicit, ify,(u) represents the autocovariance
function for the observation signad; with lag u, then the
power spectral densithiy(w) at the frequencyw can be ex-
pressed in terms of the Fourier transformygfu),

Ye(U) = (HOX) + 9O ETH(X) + 9K ) (20)

L =(HX)HXw) + (GOX) al), (21)
_ —iwu
(w) = 277f_m ey, (15) where we again use the assumption thas independent of

_ ) ) the inputX. Thus, the autocovariance decomposes into two
as guaranteed by the Wiener-Khintchine theof@6). When  terms. The first term characterizes the correlated variability
0?=0, the input state does not fluctuate, and the spectrah the output signal arising from the autocorrelated input
density has a constant level Gi(x,)/2m. Wheno?>0, the  gjgnal. The second term characterizes the average uncorre-
shape of the spectrum changes. As we show later, for reasopged fluctuations due to the intrinsic white noise. By linear-

able functionsH, the spectral density will be smooth, so that ity of the Fourier transform, the power spectrum must also
at sufficiently low frequencies, corresponding to asymptoti-qecompose into two contributions,

cally long time scales, the spectral density will be approxi-

mately constant at the level 1
hy(w) =hy(w) + —(G(X)), (22

1 o]
hy(0) = Z_J w(u)du. (16) . _
T~ the sum of the spectral density of the stationary process
Defining the mean signaf,=(Y,) and the asymptotic inten- H(X) given by h,(w), and the constant spectral density
sity of noiseG,=2why(0), the processY, is approximately ~given by the average intensity of the white noig8(Xy).
equivalent(at large time scales and in distributjoio a sec- We now turn to an analytic approach to determine the

ond process\?t that is independent of the fluctuating input power spectral dens'tb_‘H(w)' The C_)rnstem—UhIenbeck pro-
state and given by cess that governs the input signal is a Markov process, so we

may consider the transition semigrotipon functions ofX

¥() =Ho+ Gk, (17  defined by
whereé, is another continuous-time white-noise process in- TLFI0) = (F(X))x (23
dependent of,. In this specific sense, noise is suppressed if
Gp<G(xg) since the approximating proce¥s has smaller (" _
intensity noise tharY, would have had ifo?=0. Vilar and =) fy)k(y;x.t)dy, (24)

Rubi [8] provide a perturbation expansion of the integrated

scale of noise which provides as a sufficient condition foryhere the average in the first equality is conditioned on the
noise suppression tha"(xp) <0 so long aso” and 7 are  process starting a,=x and wherek(y;x, 1) is the transition
sufficiently small, although they also provide some numeri-yropability density forX,=y given X,=x. The transition ker-

ues ofo? but still with a small autocorrelation time<1. -x)e'" and variancec?(1-e2/7). The autocovariance

v4(u) can be expressed in terms of the semigroup as
Ill. SPECTRAL DECOMPOSITION

We now broaden the discussion and consider the complete (W) = (HX)TLH](X)).- (29
power spectrum of the observation process. In order 0 Chal:I_'he semigroup operator can also be expressed in terms of its
acterize the spectrum of the output signal, we first need tc|)nfinitesimal generatof asT,=€e'*, where, is defined as the
describe precisely the autocovarianceroBecausé&)=0 is differential operator t '
independent ok, the mean signaH, is simply the station-
ary average ofH(X,),

1 ! 4
Ho= (Y3 = (HOG L1100 = T[- (-39 (9 + 21 '(09]. (26)

_ . which governs the Kolmogorov backward, or adjoint, equa-
- f_x H(0 (x;Xo,0%)dlx. (18 tion for the Ornstein-Uhlenbeck diffusion procd&§. If we
_ define the inner product between functioiisand f, as the
The centered output signat=Y,—H, determines the auto- integral of the product with respect to the stationary prob-
covariance of the signal, ability measure,

051110-3



D. B. WALTON AND K. VISSCHER PHYSICAL REVIEW EG69, 051110(2004

(fq, ) = (F1 (XD (X)) Tu|: Hn(X—_A))] _ e_nu/"Hn< X’10> , (36
* V202 V202
= f f100f2(X) B(X; X0, 07X, (27)

we find that the autocovariance Elf(xt) is
then L is a self-adjoint operator in the Hilbert space defined

by this inner product. R ol

We expand the functio#l in terms of the eigenfunctions Y(u) = %Cne : (37)
of L. Eigenfunctionsf,(x) with eigenvaluex will be deter-
mined from the equation Taking the Fourier transform, we determine the power spec-

trum hy(w) as
LI =NM\(x) (28)
which can be rewritten as hy(w) = E 2n f;n = (39)
— (X= X)L (X) + 2F]'(X) = ™A Fr(X). (29) =l

which can further be represented in terms of the spectral

If we shift and rescale space using the substitution=(x
P g 09=( profile

—xo)/\s"ﬁ, the eigenvalue equation becomes

f/(2) - 2zf,(2) - 27\ f\(2) = 0, (30) hy(w) = E (39

which is well known to have as solutions the Hermite poly- n=

nomials, f,(x)=H,(z(x)), providedA=-n/7 for integer val- .

ues ofn=0 [11]. The functionsH,, are orthogonal, through the rescaling
(Ha 2P H(X207) = 82l (3D) (@) = 27y (7e). (40

and form a complete basis for the Hilbert spét#]. So for The power spectrum for the discretely sampled observa-
) T~ ~ tion process can be similarly computed. The autocovariance

a square-integrable functid [i.e., (H*(X)) <], we create ¢ the discretely sampled observation sequengg(p) de-

the Hermite expansion composes into
HX) = 2 W n( X,%O>, (32) W,a(P) = Yualp) +{B(X)) Sy,0, (41)
n=1 V2 n |

analogous to the decomposition for the continuous-time pro-
starting the sum at=1 becauséH(xt» 0. The coefficients C€SS- S0 we again focus on determining the autocovariance

are determined in the standard way by computing the innednd spectrum for the sequeridéX,). Knowing the autocor-
product relation coefficienp and the sampling intervalt (or setting

At=1 if unknown), we can determine the corresponding au-

1 -~ T tocorrelation timer=-At/In p so that the discrete autocova-
6= T=(HX)H(X/\20%)). 33 S it g
\2™! riance function forH(X,) will be given by
We emphasize that the coefficients actually dependoms Ya(p) = yu(pAt) (42)

the Hermite expansion changes wheichanges. In terms of
the rescaled variablg we havex=x,+ 202 z so that

©

1 o _ :2 Cﬁe—n\p\At/T (43)
C,= o H(xo + V20?2 H(2) $(2;0,1/2dz, (34) n=1
V2! J
so that from this perspective, changing fundamentally 5
changes the function for which we find the expansion. The ‘2 Chp el (44)
variance ofH(X;) can be simply expressed as the sum of the
squares of the coefficients,:n=1}, We compute the power spectral density, () over the fre-
% guenciesw € (—m/At, 7/ At) as the Fourier series
(H2(X)) = 2 5. (35)
n=1
_ N _ hya(@) = 2 PralPe P, (45)
We are now in a position to compute the autocovariance T p=—o

and hence the power spectrum. Using the orthogonality prop-
erty and the diagonal action of the semigroup operator on theshich will decompose into the spectrum fer(xk) plus a
eigenfunctions, white-noise component
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A * n
o) =a(o) + 5 CB0X0) (49 = S G+ (). (52
w n=1 1- pn

Outside of the interval—m/At, w/At), the spectral densities Noise suppression in this asymptotic sense will occur when
vanish. The spectral density coming frd#tX,) can then be the stationary average variance of the intrinsic noise de-

written as creases{B%(X,)) < B%(Xy), analogous to the sufficient condi-
tion for the continuous case. The sequence of facftts
At < 5 1-p2" +pM/(1-p":n=1,2,..} is a decreasing sequence converg-
hi (@) = Zn_l Cnl +p?" = 2p"cos wAt” (47) ing to 1 so that we actually obtain bounds gfin terms of

the variancegH?(X,)) and the average varian¢g?(X,)) as
For the case that the sampled data arise from the continuous 14
model,p is defined in terms of the autocorrelation timand 02 2 2_ TP 2
the sampling intervalit as p=e™Y" so that, in the limit as (HEX0) + (B7X0) < B = 1 —p<H () +{F7X),
At— 0, the spectrum for the sampled observations,(Ed), (53)
recovers the spectrum for the continuous signal, (B8).
which actually avoids the explicit computation of the coeffi-
IV. NOISE SUPPRESSION cientg{cn}. Consequently, we obtain the s.tronger necessary
condition that the sum of the average variance of the white
With the spectrum in hand, we return to the question ofnoise(8%(X,)) and the stationary variance of the sightX,)
noise suppression. First, we consider the asymptotic noissust be less thap?(x,). We also obtain the sufficient con-
level G, originally considered by Vilar and Rubi. Recall that dition that
Gy corresponds to the intensity of white noise that gives the

same spectral density &g for asymptotically small frequen- l+p ~, 5 5
cies. This intensity can be explicitly written as 1 _p<H (X)) +(BA(X) < B(Xo). (54)
® 2 Because we actually have access to the complete spectral
Go = 2mhy(0) = 27>, =" +(G(X,)). (48)  densities (continuous or sampled we may consider a
n

n=1 broader view of noise suppression, namely, a decrease in the
integrated spectral power over a bandwidth of frequencies.
The decomposition clearly shows that a necessary conditiowhen the input signal is held constafit?=0), the power

for noise suppression in this sensg,<G(X), is that the  spectrum for the continuous observation procéssiill be

average intensity of white-noise decrease, flat with densityG(x,)/27. When the input signal is allowed
to fluctuate (6?>0), the spectrum adjusts to include the
(G(Xy) < G(xo), (49 spectral densityhy(w) in addition to the already existing

. the effect of the fluctuati ianal ing f 0 white component corresponding to intrinsic noise. Because
since the effect of the fluctuating signal coming fréwy(0) the intensity of the intrinsic noise is now averaged over the

raises t_he spectral density even hi_gher. In fact, if we add thgtationary distribution ofX,, the white component of the
constraint on the autocorrelation time spectrum shifts to the levelG(X,))/2m, which becomes a
baseline for the spectral power at all frequencies. Let

< M (500 =(w,, wp) represent the spectral interval under consideration.
oS When Eg.(49) holds and the baseline has decreased, the
=~ Ci/n integrated spectral power on the intervakill decrease if
wb —_
we have a necessary and sufficient condition for noise sup- f hy(w)dw < M(wb— w,). (55)
pression. We stress that a fixed valueoois implicit in this @ 2m
statement, since bofG(X;)) and the coefficients,, depend

on Sincehy(w) | 0 as|w|— %, we will always be able to find a
7 frequency intervalat least at high frequencigsvhere the

In a similar way, we might consider a random Sequencefntegrated spectral power has decreased whenever the white

{Yid which is independent of the stake given by the analog  gpectral component has decreased. If we integrate the spec-
of Eq. (17), tral densityh,(w) over the entire real line, we recover the

R variance ofH(X,),
Yk: HO+B08k! (51)

where &, is a white-noise sequence. Such a sequence will f_x hi(w)dw = y(0) = (HA(Xy), (56)
have a white power spectrum which will correspond to the

spectral density ofY,} at low frequencieshy 4(0), if 85is  since this amounts to computing the inverse Fourier integral
defined as for u=0. Thus, the integrated contribution fromy(w) over
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=

any interval will always be less than the varianig@(xt)). If
we consider the symmetric frequency inter¢ab,, w,), the
integrated spectral density on this interval must decrease so o gl
long as

<G (V)>
o
o

_ (HA(X))
G(%o) — (G(Xp)”

This is true even if the originally considered asymptotic

(57)

Wgq

noise has increaset,> G(xy), which simply indicates that 0.2k
the spectral density begins above the original white spectral 0 05 1 5 > 25 3
density and then falls below that level at higher frequencies. Vo

Note that if Go<G(xy), then the entire spectral density is

below the original spectral density and thus the integrated FIG. 1. The average intensity of intrinsic white nois&(Vy),

spectral power will show a decrease over every interval. fpr various mean input signalg) in the absencg of state fluctua-
For discretely sampled observations, we can similarlyfions (¢=0) and for two levels of state fluctuationg=1,0=2).

consider the integrated spectral power. A significant differ-Units are arbitrary.

ence between the continuous and the sampled cases, how-

ever, is that the power spectrum for the sampled observation — 0 — ,33

is defined on a compact interval while the spectrum for the VarY7] ~ T VarYy] ~ N’ (62)

continuous output signal has infinite support. Consequently,

the spectral densitlyy »(w) will not vanish on this support so  asT— andN— <, respectively.

that we may not be able to find a frequency interval where

the integrated spectral power has decreased even if the white

spectral component has decreased, particularly whes

Iarge. On the other hand, although the total power for the We demonstrate these princip|es using an examp|e pro-

continuous process will be infinite, the total power for posed in Ref[8] of a model for electrical conduction which

V. EXAMPLE

sampled observations is finite and given by displays saturatiofiL3,14. The statex=V corresponds to an
At input voltage. The observed current intensity has a mean
f hy o(0)dw = <ﬁ2(xk)> + <:82(Xk)>v (58) characterized by the function
—mlAt
\%
. . HV) = ————775: (62
the sum of the variance ¢f(X,) and the average variance of R(1+V9)

the added white noise. That is, the total spectral power is
precisely equal to the variance of the output sequence. Thu#

if Q

~ G(V) - (1 +V2)1/2’
(H2(X) + (BA(X) < B(Xo), (59
whereR andQ are constants. To conform to standard nota-
we would observe a decrease in the variance of the signation, we useV rather thanX for this discussion. The param-
which might be visualized as a narrowing of a histogram ofetersR andQ set the observation scale and the time scale, so
observed values. that by rescaling the variableés andt we may assume that
We remark in passing that the asymptotic noise le@&ls R=1 andQ=1.

and ,8(2) also have a well-established nonspectral interpreta- We first consider the effect of input fluctuations on the
tion. If we were to estimate the mean output sigHglusing  average intensity of the intrinsic output nois&(V,)). Fig-
our observations, the@, would correspond to an asymptotic ure 1 plots the average intrinsic output noise intensity
variance of that estimate based on continuous observatiod&(V,)) as a function of the mean input signaj for two
while 83 would correspond to an asymptotic variance of thenon-zero levels of input fluctuatioris=1 anda=2) as well
estimate based on sampled observatifi§j, such as one as the original intensity of intrinsic noige-=0), which sim-
might compute using Markov chain Monte Carlo algorithmsp|y corresponds to plotting(v,). Averaging the intensity of
[12]. In particular, if we define the continuous and discretejntrinsic noise flattens and broadens the intensity profile as
sample means, respectively, as increases, so that the intensity profile completely vanishes in
the limit aso— . Whenever the intensity profile lies below
the original intensity profiléc=0), the baseline level of the
output signal power spectrum is decreased so that output
noise is suppressed beyond some spectral frequency. Figure
then the variance of these estimators will asymptotically de2 shows the average intrinsic output noise intené@WV,))
crease as for fixed mean input signals, as the size of the input signal

nd the intensity of the noise is characterized by

(63)

— 1
YT=_

T _ gt
Yedt, Yy=—2 Y 60
e MeiZve o

0
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1t 1.2} V=0
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FIG. 2. The average intensity of intrinsic white noig&(V,)), FIG. 3. The power spectral intensityrBy(w) as a function of

as a function of the size of input fluctuatiofs) for three values of ~ spectral frequencw for a mean input signaly=0 and input fluc-

the mean input signalvg=0, vo=1/v2, andvo=1.5. Units are  tuations of sizer=1 where the input signal has autocorrelation time

arbitrary. 7=0.5, 7=0.25, and in the limitr| 0. The reference white spectral
density in the absence of input fluctuations is shown with a dotted

fluctuationso increases. For small values of the behavior  'In€ [G(0)=1]. Units are arbitrary.

of (G(V,)) is completely determined b®"(vy) using the per-

turbative approximation given by Re], =0.25. The peak spectral intensity at=0 corresponds to

the integrated scal&,.
1 o For those conditions where the average intensity of the
(G(Vy) = G(v) + 30°G"(vo), (64)  intrinsic output noise decreases, the inequality of &)
determines a maximum autocorrelation time so that
so that concavity initially determines whether the averagesy,<G(vg). Recall that the suppression of the asymptotic
noise intensity increases or decreases. V\lzlrbeﬂll\s@, the scale of nois€s, is equivalent to the power spectrum of the
function G is concave down so that the average intensityoutput noise lying completely below the original white spec-
initially decreases. Due to the specific example under contrum in the absence of input fluctuations. In Fig. 3, this maxi-
sideration, this behavior continues for larger valuesrpfo  mum time would correspond to that timavhere the spectral
that the baseline of the power spectrum continually lowersdensity is tangent to the original spectral densitywatO.
Whenuvy>1/42, G is concave up so that the average inten-Figure 4 provides a contour plot of this maximum autocor-
sity initially increases as the stationary distribution samplegelation time as a function afy and o. The heavy contour
stategnearV=0) where the noise intensity is high. However, line for 7=0 separates the region where noise suppression is
aso continues to increase, the stationary distribution samples
more extreme states where the intensity becomes asymptot AL
cally small. Consequently, the average intensity eventually I - ]
decreases. Thus, although concavity determines whether th
white component of the spectrum increases or decreases fc | 5|
small values ofo, it becomes irrelevant for predicting noise
suppression for larger values of The mean input leved,
=1/y2 corresponds to the point whe®(vo)=0, so that the
fourth-order derivative, which is negative, determines that”
the average noise initially decreases proportionallyto
We next consider the power spectrum under conditions I
where noise  suppression is  possible, namely, 0.5
(G(V})) <G(vg). Figure 3 plots typical power spectral densi- I
ties corresponding to,=0 ando=1. When the autocorrela- I
tion time for the input fluctuations is too large.g.,7=0.5), 0
part of the spectral density is larger than the initial flat inten-
sity at G(0)=1. However, for sufficiently large frequencies ©

w, th? spectral intensity decreases and_ ‘T’lpproaCheS the NeWE|G. 4. A contour graph showing the largest possible autocorre-
basel'ne(vat)><G(UQ)’ so that over sufficiently Iarge SPEC- |ation time for the input fluctuations, as a function of mean input
tral bandwidths, the integrated spectral power will decreasgjgnaly, and input fluctuation size such that noise is suppressed,
for any arbitrary autocorrelation time But when the auto- G,<G(v,), as calculated in Eq50). Solid contours represent in-
correlation time is sufficiently small, the spectral intensity crements ofA7=0.1, dashed contours represent incrementa of
lowers and widens according to the scaling in Ef) until  =0.05, and the contour for=0 is shown in bold. Units are

it is uniformly smaller than the initial intensitye.g., 7 arbitrary.

051110-7



D. B. WALTON AND K. VISSCHER PHYSICAL REVIEW EG69, 051110(2004

possible from the region where noise invariably increasestuating signal itself. Consequently, noise suppression is pos-
We see that in this example the maximum autocorrelatiorsible only when the average intensity of the intrinsic noise

time increases as the input fluctuations increase. Two factordecreases. That is, the increased fluctuations in the input sig-
make this possible. First, as the fluctuatierfsincrease, the nal must cause the system to visit more frequently those
average intensity of the intrinsic noig&(V,)) decreases to states where the intrinsic noise has low intensity such that
zero. Second, the variation in the mean output sigh@l,)  the ergodic average of the intensity decreases.

increases as? increases. However, sindé¢(V,) is bounded In most examples where the presence of noise leads to an
between +1 and -1, added fluctuations at the input lead téicrease in order, the noise interacts with some underlying
smaller and smaller increases in the variatioH¢¥,). Con- ~ nonlinear dynamical system. For example, stochastic reso-
sequently, for a given mean inpug, the maximum autocor- Nance is often illustrated by co_nsplerlng how noise allows a

relation time will be bounded. Considering the other direc-State to cross an energy barrier in synchrony with a weak
tion, as o]0, the maximum autocorrelation time is external signa[4]. Coherence resonance occurs when noise

determined from the previous perturbation res{fsto be pushes the state of a dynamical system across a threshold to
an excited state which then returns to the original ground

__ G'(wo) state[7]. In contrast, our example relies on the ergodicity of
T —, (65) ; . . .
4H' (vo)? the input signal, rather than nonlinear dynamics, to reduce
o the noise in the output signal. That is, according to the
so long as the conditio®”(vo) <0 holds. theory, there must be some input states where the intrinsic
intensity of output noise is decreased. As the input signal
VI. CONCLUSION samples its available phase space, it is driven into these low-

In this paper, we have considered noise suppression in tHaoise states sufficiently often such that the average intensity

o : 6 noise decreases relative to when the input signal is con-

context of the power spectrum of an intrinsically noisy out- _ . .
. . . . . trained to a smaller region of phase space.

put signal for a system in which the correlations at the |nputS
decay exponentially. Because the intrinsic noise at the output
depends on the input signal only in terms of the intensity, the ACKNOWLEDGMENTS
autocovariance for the output signal and therefore the power
spectrum both undergo a simple decomposition. This decom- The authors thank Yeonee Seol and Joe Watkins for help-
position shows that the spectrum has a contribution arisindul discussions. This material was based upon work sup-
from the average intensity of the intrinsic noise plus a comported by the National Science Foundation as well as under
ponent corresponding to the variation arising from the fluc-NSF Grants Nos. DGE-987069 and DMS-9810726.

[1] R. D. Astumian, Scienc@76, 917 (1997). [10] M. B. Priestley,Spectral Analysis and Time Serig&cademic

[2] Y. Okada and N. Hirokawa, Scienc283 1152(1999. Press, London, 1981

[3] R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani, SIAMoc.  [11] E. MerzbacherQuantum MechanicéNiley, New York, 1970.
Ind. Appl. Math) J. Appl. Math. 43, 565 (1983. [12] A. Sokal, inFunctional Integration (Cargése, 1996)ol. 361

[4] P. Hanggi, ChemPhysChei} 285(2002.
[5] D. F. Russell, L. A. Wilkens, and F. Moss, Natufieondon)
402, 291(1999.

of NATO Advanced Studies Institute, Series B: Physics, edited
by C. DeWitt-Morette, P. Cartier, and A. Folac@®lenum,
New York, 1997, pp. 131-192.

[6] Z. F. Mainen and T. J. Sejnowski, Scien26é8 1503(1995. : ) )

[7] A. S. Pikovsky and J. Kurths, Phys. Rev. LeT8, 775(1997). [13] Hot Electron Transport in Semiconductoedited by L. Reg-

[8] J. M. G. Vilar and J. M. Rubi, Phys. Rev. Le86, 950(2001). giani (Springer-Verlag, Berlin, 1985 _ o

[9] N. G. van Kampen,Stochastic Processes in Physics and [14] A. van der Ziel,Noise in Solid State Devices and Circuits
Chemistry(North-Holland, Amsterdam, 1981 (Wiley, New York, 1986.

051110-8



