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It recently has been shown that the observed noise amplitude of an intrinsically noisy system may be reduced
by causing the underlying state to fluctuate[J. M. G. Vilar and J. M. Rubí, Phys. Rev. Lett.86, 950 (2001)].
This paper extends the previous theory by considering the full power spectrum of the output signal, interpreting
noise reduction in terms of the low-frequency end of the spectrum as well as the integrated spectrum. Our
treatment accounts for arbitrarily sized fluctuations and deals with both continuous and discretely sampled
observations. We show that noise suppression is possible if and only if the stationary average of the intensity
of state-dependent noise decreases. We apply our analysis to an example involving saturable electrical con-
duction discussed in the original paper by Vilar and Rubí.
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I. INTRODUCTION

Although noise is generally considered a nuisance, its
constructive properties have become increasingly clear in re-
cent years as it plays essential roles in many fundamental
processes, particularly in biology. For example, biological
motion by motor proteins requires the presence of thermal
fluctuations[1,2]. Furthermore, the response of sensory sys-
tems can be enhanced through the interactions of noise and a
weak driving signal leading to stochastic resonance[3–5].
Neuron firing patterns have been experimentally observed to
be more consistent for signals with noisy characteristics than
for flat pulses[6]. Additionally, some excitable systems may
achieve more order in the presence of noise, even in the
absence of an external signal, such as in the phenomenon of
coherence resonance where an optimal level of noise leads to
regular excursions from the ground state[7]. Recently, an-
other beneficial aspect of noise has come to light: the addi-
tion of noise at a signal input may lead to a reduction of
noise levels at the signal output[8].

In their paper[8], Vilar and Rubí consider the effect of
adding fluctuations to the input of a system where the intrin-
sically noisy output signal depends on the input signal. In
particular, they propose a model where, for a steady input,
the rapid fluctuations in the output signal due to intrinsic
noise are essentially white, with an intensity that depends on
the particular input signal. Assuming that the autocorrelation
time of the noise added at the input is short compared to
times of interest, the output signal has a spectrum that re-
mains essentially white over the low frequencies of interest.
Vilar and Rubí demonstrate that the spectral intensity of the
output noise at these low frequencies can be reduced by add-
ing fluctuations at the input of the system. They also give a
sufficient condition for such a reduction when the added
fluctuations at the input are kept sufficiently small.

In this paper, we provide a more complete mathematical
basis for the phenomenon of noise suppression in such a
system. In particular, we provide a framework for predicting
the power spectral density for arbitrary scales of input fluc-

tuations. We also adapt the original model to account for
discretely sampled observations. The overall fluctuations in
the output signal naturally decouple into contributions aris-
ing from the intrinsic noise as well as the changing input. We
take advantage of this decomposition to compute the spectral
power from these two contributions separately. A conse-
quence of this result is that noise suppression, which corre-
sponds to a decrease in the spectral power of the signal at
either specific frequencies or over a range of frequencies,
will only occur if the average intensity of intrinsic noise
decreases.

The paper is organized as follows. First, we provide a
formal description of the model describing the input and out-
put signals and introduce the appropriate quantitative mea-
sures of noise. Next, we consider the power spectrum for the
output signal, showing that it decomposes into a white com-
ponent corresponding to the average intensity of intrinsic
noise plus the spectrum characterizing the output signal in
the absence of intrinsic noise. We further demonstrate an
explicit approach to determining this profile using an eigen-
mode expansion involving Hermite polynomials. Third, we
discuss the possibility of noise suppression in the context of
this spectral decomposition. Subsequently, we apply the
techniques to one of the examples originally provided by
Vilar and Rubí. We conclude by commenting on the basic
mechanism required for noise suppression.

II. MODEL DESCRIPTION

The system under consideration essentially models an ob-
served signal that is regulated by an underlying stateX which
could represent either an unobserved, internal dynamic vari-
able or an external, controlled input signal. The output signal
Y will be intrinsically noisy in that there will be uncorrelated
fluctuations for every state of the input. We seek a model that
captures the following properties. First, the output signal re-
laxes rapidly to an essentially stationary process that depends
on the current value of the input signal, characterized by a
mean signal level and by the intensity of the intrinsic, uncor-
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related noise. We idealize this relaxation by assuming thatY
instantaneously reflects the current stateX. Second, the input
signal will correspond to a stationary Gaussian process
whose autocorrelation decays exponentially in time.

Let Xt and Yt represent the values of the signals at the
time t. The input signalXt is modeled as a stationary, con-
tinuous Gaussian process with meanx0, variances2, and
autocorrelation timet. For a finite, arbitrary collection of
times,t1, t2, ¯ , tn, the distribution ofXt is characterized
by the density

Fst1,x1;t2,x2; . . . ;tn,xnd = fsx1;x0,s
2dp

l=2

n

fsxl ;ml,sl
2d,

s1d

where the individual factors are expressed in terms of the
densities of Gaussian random variables with means

ml = x0 + sxl−1 − x0de−stl−tl−1d/t s2d

and variances

sl
2 = s2s1 − e−2stl−tl−1d/td s3d

through the parametrized density for a Gaussian random
variable with meanm and varianceh2,

fsx;m,h2d =
1

Î2ph2
expS−

sx − md2

2h2 D . s4d

The autocovariance ofXt is given bygXsud as

gXsud = kX̃tX̃t+ul = s2e−uuu/t, s5d

whereX̃t=Xt−x0 represents the centered state, and averages
are with respect to the given distribution. This process is
equivalent to the Ornstein-Uhlenbeck velocity process[9],
but with a shifted mean. For discretely sampled observations
of the output, we define observation timeshtk=kDt ;kù0j in
terms of the sampling intervalDt, and for notational simplic-
ity write Xk=Xtk

andYk=Ytk
. In this case, we naturally define

the autocorrelationr=e−Dt/t, and the sequencehXkj becomes
a simple autoregressive process[often written AR(1)] with
autocorrelationr and variances2 [10], which has a corre-
sponding discrete autocovariance functiongX,Dspd for lag p
as

gX,Dspd = kX̃kX̃k+pl = s2rupu. s6d

Settings2=0 corresponds to a constant input signal.
The observation processYt will be a function of the state

Xt with additive state-dependent white-noise so that we write

Yt = HsXtd + gsXtdjt. s7d

The processjt represents a standard continuous-time white-
noise process that is independent of the input processX,
having zero meankjtl=0, and autocovariance

kjstdjssdl = dst − sd. s8d

The functionHsXd represents the mean output signal for a
given stateX, while the functiongsXd establishes the inten-

sity of output noise for that state. If the stateX remains
constantss2=0d, thenY has an autocovariance given by

kfYt − HsXdgfYs − HsXdgl = GsXddst − sd, s9d

expressed in terms of the covariance intensityGsXd=g2sXd.
We remark that mathematically, the white-noise processjt
and consequentlyYt are not well-defined stochastic pro-
cesses, but in fact should be expressed as stochastic differ-
entials[9]. The white noisejt corresponds to the differential
of a Wiener process andYt corresponds to the differential of
a diffusion with state-dependent infinitesimal driftHsXd and
varianceGsXd. Nevertheless, the formal expressions given
above will suffice for this paper. In the discretely sampled
case, we introduce the discrete white-noise processh«kj, an
independent and identically distributed sequence of Gaussian
random variables each with zero mean and unit variance,
which is independent of the state processhXkj, so that we
may write

Yk = HsXkd + bsXkd«k. s10d

We remark that the varianceb2sXd arising from the
sampled case may or may not be related to an underlying
continuous intensityGsXd. If we integrate the observationYt

over an interval of durationDt which is short compared to
the autocorrelation timet, then Xt remains essentially un-
changed over that interval and we may approximate

E
t

t+Dt

Ys ds< HsXtdDt + gsXtdDWDt, s11d

whereDWDt is a Gaussian random variable with mean zero
and varianceDt. Dividing both sides of this by the interval
duration Dt, we average the signal. That is, the discretely
sampled sequence generated by averaging the continuous
signal,

Yk =
1

Dt
E

tk−1

tk
Yt dt s12d

would be well approximated by

Yk < HsXkd + gsXkd
DWDt,k

Dt
. s13d

In order for the variance of the noise term of this approxi-
mation to match the discretely sampled model given in Eq.
(10), we must have

b2sXd =
1

Dt
GsXd. s14d

The essential property for associating the discrete noise vari-
ance with the continuous noise intensity is that averaging the
signal accumulates error over the entire intervalDt at an
approximately constant rateGsXtd. If, however, the discrete
observation results from a single observation occurring at the
end of the sampling interval, the intrinsic noise results either
from a brief accumulation of error related to the time to
make the observation or else from other sources of error. In
both cases, the discrete scale of noiseb2sXd becomes inde-
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pendent of the time between samples,Dt, so that a relation-
ship betweenb2sXd and someGsXd through Eq.(14) would
not hold.

The asymptotic suppression of noise discussed in Ref.[8]
refers to a decrease in the spectral intensity at low frequen-
cies. To be explicit, ifgYsud represents the autocovariance
function for the observation signalYt with lag u, then the
power spectral densityhYsvd at the frequencyv can be ex-
pressed in terms of the Fourier transform ofgYsud,

hYsvd =
1

2p
E

−`

`

gYsude−ivudu, s15d

as guaranteed by the Wiener-Khintchine theorem[10]. When
s2=0, the input state does not fluctuate, and the spectral
density has a constant level ofGsx0d /2p. Whens2.0, the
shape of the spectrum changes. As we show later, for reason-
able functionsH, the spectral density will be smooth, so that
at sufficiently low frequencies, corresponding to asymptoti-
cally long time scales, the spectral density will be approxi-
mately constant at the level

hYs0d =
1

2p
E

−`

`

gYsuddu. s16d

Defining the mean signalH0=kYtl and the asymptotic inten-
sity of noiseG0=2phYs0d, the processYt is approximately
equivalent(at large time scales and in distribution) to a sec-

ond processŶt that is independent of the fluctuating input
state and given by

Ŷstd = H0 + ÎG0ĵt, s17d

where ĵt is another continuous-time white-noise process in-
dependent ofjt. In this specific sense, noise is suppressed if

G0,Gsx0d since the approximating processŶt has smaller
intensity noise thanYt would have had ifs2=0. Vilar and
Rubí [8] provide a perturbation expansion of the integrated
scale of noise which provides as a sufficient condition for
noise suppression thatG9sx0d,0 so long ass2 and t are
sufficiently small, although they also provide some numeri-
cal examples demonstrating that this persists for larger val-
ues ofs2 but still with a small autocorrelation timet!1.

III. SPECTRAL DECOMPOSITION

We now broaden the discussion and consider the complete
power spectrum of the observation process. In order to char-
acterize the spectrum of the output signal, we first need to
describe precisely the autocovariance ofY. Becausekjtl=0 is
independent ofXt, the mean signalH0 is simply the station-
ary average ofHsXtd,

H0 = kYtl = kHsXtdl

=E
−`

`

Hsxdfsx;x0,s
2ddx. s18d

The centered output signalỸt=Yt−H0 determines the auto-
covariance of the signal,

gYsud = kỸtỸt+ul. s19d

By writing H̃sxd=Hsxd−H0, we can explicitly see the contri-
butions arising from the white noise and from the fluctua-
tions in the input,

gYsud = kfH̃sXtd + gsXtdjtgfH̃sXt+ud + gsXt+udjt+ugl s20d

=kH̃sXtdH̃sXt+udl + kGsXtdldsud, s21d

where we again use the assumption thatjt is independent of
the inputX. Thus, the autocovariance decomposes into two
terms. The first term characterizes the correlated variability
in the output signal arising from the autocorrelated input
signal. The second term characterizes the average uncorre-
lated fluctuations due to the intrinsic white noise. By linear-
ity of the Fourier transform, the power spectrum must also
decompose into two contributions,

hYsvd = hHsvd +
1

2p
kGsXtdl, s22d

the sum of the spectral density of the stationary process

H̃sXtd given by hHsvd, and the constant spectral density
given by the average intensity of the white noise,kGsXtdl.

We now turn to an analytic approach to determine the
power spectral densityhHsvd. The Ornstein-Uhlenbeck pro-
cess that governs the input signal is a Markov process, so we
may consider the transition semigroupTt on functions ofX
defined by

Ttffgsxd = kfsXtdlx s23d

=E
−`

`

fsydksy;x,tddy, s24d

where the average in the first equality is conditioned on the
process starting atX0=x and whereksy;x,td is the transition
probability density forXt=y given X0=x. The transition ker-
nel ksy;x,td is the Gaussian density with meanx0+sx
−x0de−t/t and variances2s1−e−2t/td. The autocovariance
gHsud can be expressed in terms of the semigroup as

gHsud = kH̃sXtdTufH̃gsXtdl. s25d

The semigroup operator can also be expressed in terms of its
infinitesimal generatorL asTt=etL, whereL is defined as the
differential operator

Lffgsxd =
1

t
f− sx − x0df8sxd + s2f 9sxdg, s26d

which governs the Kolmogorov backward, or adjoint, equa-
tion for the Ornstein-Uhlenbeck diffusion process[9]. If we
define the inner product between functionsf1 and f2 as the
integral of the product with respect to the stationary prob-
ability measure,
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kf1, f2l = kf1sXtdf2sXtdl

=E
−`

`

f1sxdf2sxdfsx;x0,s
2ddx, s27d

thenL is a self-adjoint operator in the Hilbert space defined
by this inner product.

We expand the functionH̃ in terms of the eigenfunctions
of L. Eigenfunctionsflsxd with eigenvaluel will be deter-
mined from the equation

Lfflgsxd = lflsxd s28d

which can be rewritten as

− sx − x0dfl8sxd + s2fl9sxd = tlflsxd. s29d

If we shift and rescale space using the substitutionzsxd=sx
−x0d /Î2s2, the eigenvalue equation becomes

fl9szd − 2zfl8szd − 2tlflszd = 0, s30d

which is well known to have as solutions the Hermite poly-
nomials, flsxd=Hnszsxdd, providedl=−n/t for integer val-
ues ofnù0 [11]. The functionsHn are orthogonal,

kHnsX̃t/Î2s2dHmsX̃t/Î2s2dl = dn,m2nn! s31d

and form a complete basis for the Hilbert space[11]. So for

a square-integrable functionH̃ [i.e., kH̃2sXtdl,`], we create
the Hermite expansion

H̃sxd = o
n=1

`
cn

Î2nn!
HnSx − x0

Î2s2D , s32d

starting the sum atn=1 becausekH̃sXtdl=0. The coefficients
are determined in the standard way by computing the inner
product

cn =
1

Î2nn!
kH̃sXtdHnsX̃t/Î2s2dl. s33d

We emphasize that the coefficients actually depend ons2, as
the Hermite expansion changes whens2 changes. In terms of
the rescaled variablez, we havex=x0+Î2s2 z so that

cn =
1

Î2nn!
E

−`

`

H̃sx0 + Î2s2zdHnszdfsz;0,1/2ddz, s34d

so that from this perspective, changings fundamentally
changes the function for which we find the expansion. The

variance ofH̃sXtd can be simply expressed as the sum of the
squares of the coefficientshcn:nù1j,

kH̃2sXtdl = o
n=1

`

cn
2. s35d

We are now in a position to compute the autocovariance
and hence the power spectrum. Using the orthogonality prop-
erty and the diagonal action of the semigroup operator on the
eigenfunctions,

TuFHnSx − x0

Î2s2DG = e−nu/tHnSx − x0

Î2s2D , s36d

we find that the autocovariance ofH̃sXtd is

gHsud = o
n=1

`

cn
2e−nuuu/t. s37d

Taking the Fourier transform, we determine the power spec-
trum hHsvd as

hHsvd =
1

2p
o
n=1

`

cn
2 2t n

n2 + stvd2 , s38d

which can further be represented in terms of the spectral
profile

ĥHsvd =
1

2p
o
n=1

`

cn
2 n

n2 + v2 s39d

through the rescaling

hHsvd = 2tĥHstvd. s40d

The power spectrum for the discretely sampled observa-
tion process can be similarly computed. The autocovariance
of the discretely sampled observation sequencegY,Dspd de-
composes into

gY,Dspd = gH,Dspd + kb2sXkdldp,0, s41d

analogous to the decomposition for the continuous-time pro-
cess. So we again focus on determining the autocovariance

and spectrum for the sequenceH̃sXkd. Knowing the autocor-
relation coefficientr and the sampling intervalDt (or setting
Dt=1 if unknown), we can determine the corresponding au-
tocorrelation timet=−Dt / ln r so that the discrete autocova-

riance function forH̃sXkd will be given by

gH,Dspd = gHspDtd s42d

=o
n=1

`

cn
2e−nupuDt/t s43d

=o
n=1

`

cn
2rnupu. s44d

We compute the power spectral densityhY,Dsvd over the fre-
quenciesvP s−p /Dt ,p /Dtd as the Fourier series

hY,Dsvd =
Dt

2p
o

p=−`

`

gY,Dspde−ivpDt, s45d

which will decompose into the spectrum forH̃sXkd plus a
white-noise component
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hY,Dsvd = hH,Dsvd +
Dt

2p
kb2sXkdl. s46d

Outside of the intervals−p /Dt ,p /Dtd, the spectral densities

vanish. The spectral density coming fromH̃sXkd can then be
written as

hH,Dsvd =
Dt

2p
o
n=1

`

cn
2 1 − r2n

1 + r2n − 2rncosvDt
. s47d

For the case that the sampled data arise from the continuous
model,r is defined in terms of the autocorrelation timet and
the sampling intervalDt as r=e−Dt/t so that, in the limit as
Dt→0, the spectrum for the sampled observations, Eq.(47),
recovers the spectrum for the continuous signal, Eq.(38).

IV. NOISE SUPPRESSION

With the spectrum in hand, we return to the question of
noise suppression. First, we consider the asymptotic noise
level G0 originally considered by Vilar and Rubí. Recall that
G0 corresponds to the intensity of white noise that gives the
same spectral density asYt for asymptotically small frequen-
cies. This intensity can be explicitly written as

G0 = 2phYs0d = 2to
n=1

`
cn

2

n
+ kGsXtdl. s48d

The decomposition clearly shows that a necessary condition
for noise suppression in this sense,G0,Gsx0d, is that the
average intensity of white-noise decrease,

kGsXtdl , Gsx0d, s49d

since the effect of the fluctuating signal coming fromhHs0d
raises the spectral density even higher. In fact, if we add the
constraint on the autocorrelation time

t ,
Gsx0d − kGsXtdl

2o
n=1

`

cn
2/n

, s50d

we have a necessary and sufficient condition for noise sup-
pression. We stress that a fixed value ofs is implicit in this
statement, since bothkGsXtdl and the coefficientscn depend
on s.

In a similar way, we might consider a random sequence

hŶkj which is independent of the stateX, given by the analog
of Eq. (17),

Ŷk = H0 + b0«̂k, s51d

where «̂k is a white-noise sequence. Such a sequence will
have a white power spectrum which will correspond to the
spectral density ofhYkj at low frequencies,hY,Ds0d, if b0

2 is
defined as

b0
2 = o

n=1

`

cn
21 + rn

1 − rn + kb2sXkdl. s52d

Noise suppression in this asymptotic sense will occur when
the stationary average variance of the intrinsic noise de-
creases,kb2sXkdl,b2sx0d, analogous to the sufficient condi-
tion for the continuous case. The sequence of factorshs1
+rnd / s1−rnd :n=1,2, . . .j is a decreasing sequence converg-
ing to 1 so that we actually obtain bounds onb0

2 in terms of

the variancekH̃2sXkdl and the average variancekb2sXkdl as

kH̃2sXkdl + kb2sXkdl , b0
2 ,

1 + r

1 − r
kH̃2sXkdl + kb2sXkdl,

s53d

which actually avoids the explicit computation of the coeffi-
cients hcnj. Consequently, we obtain the stronger necessary
condition that the sum of the average variance of the white
noisekb2sXkdl and the stationary variance of the signalHsXkd
must be less thanb2sx0d. We also obtain the sufficient con-
dition that

1 + r

1 − r
kH̃2sXkdl + kb2sXkdl , b2sx0d. s54d

Because we actually have access to the complete spectral
densities (continuous or sampled), we may consider a
broader view of noise suppression, namely, a decrease in the
integrated spectral power over a bandwidth of frequencies.
When the input signal is held constantss2=0d, the power
spectrum for the continuous observation processYt will be
flat with densityGsx0d /2p. When the input signal is allowed
to fluctuate ss2.0d, the spectrum adjusts to include the
spectral densityhHsvd in addition to the already existing
white component corresponding to intrinsic noise. Because
the intensity of the intrinsic noise is now averaged over the
stationary distribution ofXt, the white component of the
spectrum shifts to the levelkGsXtdl /2p, which becomes a
baseline for the spectral power at all frequencies. LetI
=sva,vbd represent the spectral interval under consideration.
When Eq. (49) holds and the baseline has decreased, the
integrated spectral power on the intervalI will decrease if

E
va

vb

hHsvddv ,
Gsx0d − kGsXtdl

2p
svb − vad. s55d

SincehHsvd↓0 asuvu→`, we will always be able to find a
frequency interval(at least at high frequencies) where the
integrated spectral power has decreased whenever the white
spectral component has decreased. If we integrate the spec-
tral densityhHsvd over the entire real line, we recover the
variance ofHsXtd,

E
−`

`

hHsvddv = gHs0d = kH̃2sXtdl, s56d

since this amounts to computing the inverse Fourier integral
for u=0. Thus, the integrated contribution fromhHsvd over
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any interval will always be less than the variancekH̃2sXtdl. If
we consider the symmetric frequency intervals−va,vad, the
integrated spectral density on this interval must decrease so
long as

va . p
kH̃2sXtdl

Gsx0d − kGsXtdl
. s57d

This is true even if the originally considered asymptotic
noise has increased,G0.Gsx0d, which simply indicates that
the spectral density begins above the original white spectral
density and then falls below that level at higher frequencies.
Note that if G0,Gsx0d, then the entire spectral density is
below the original spectral density and thus the integrated
spectral power will show a decrease over every interval.

For discretely sampled observations, we can similarly
consider the integrated spectral power. A significant differ-
ence between the continuous and the sampled cases, how-
ever, is that the power spectrum for the sampled observation
is defined on a compact interval while the spectrum for the
continuous output signal has infinite support. Consequently,
the spectral densityhH,Dsvd will not vanish on this support so
that we may not be able to find a frequency interval where
the integrated spectral power has decreased even if the white
spectral component has decreased, particularly whenr is
large. On the other hand, although the total power for the
continuous process will be infinite, the total power for
sampled observations is finite and given by

E
−p/Dt

p/Dt

hY,Dsvddv = kH̃2sXkdl + kb2sXkdl, s58d

the sum of the variance ofHsXkd and the average variance of
the added white noise. That is, the total spectral power is
precisely equal to the variance of the output sequence. Thus,
if

kH̃2sXkdl + kb2sXkdl , b2sx0d, s59d

we would observe a decrease in the variance of the signal,
which might be visualized as a narrowing of a histogram of
observed values.

We remark in passing that the asymptotic noise levelsG0
and b0

2 also have a well-established nonspectral interpreta-
tion. If we were to estimate the mean output signalH0 using
our observations, thenG0 would correspond to an asymptotic
variance of that estimate based on continuous observations
while b0

2 would correspond to an asymptotic variance of the
estimate based on sampled observations[10], such as one
might compute using Markov chain Monte Carlo algorithms
[12]. In particular, if we define the continuous and discrete
sample means, respectively, as

ȲT =
1

T
E

0

T

Yt dt, ȲN =
1

N
o
k=0

n−1

Yk, s60d

then the variance of these estimators will asymptotically de-
crease as

VarfȲTg ,
G0

T
, VarfȲNg ,

b0
2

N
, s61d

asT→` andN→`, respectively.

V. EXAMPLE

We demonstrate these principles using an example pro-
posed in Ref.[8] of a model for electrical conduction which
displays saturation[13,14]. The stateX=V corresponds to an
input voltage. The observed current intensity has a mean
characterized by the function

HsVd =
V

Rs1 + V2d1/2, s62d

and the intensity of the noise is characterized by

GsVd =
Q

s1 + V2d1/2, s63d

whereR andQ are constants. To conform to standard nota-
tion, we useV rather thanX for this discussion. The param-
etersR andQ set the observation scale and the time scale, so
that by rescaling the variablesY and t we may assume that
R=1 andQ=1.

We first consider the effect of input fluctuations on the
average intensity of the intrinsic output noise,kGsVtdl. Fig-
ure 1 plots the average intrinsic output noise intensity
kGsVtdl as a function of the mean input signalv0 for two
non-zero levels of input fluctuations(s=1 ands=2) as well
as the original intensity of intrinsic noisess=0d, which sim-
ply corresponds to plottingGsv0d. Averaging the intensity of
intrinsic noise flattens and broadens the intensity profile ass
increases, so that the intensity profile completely vanishes in
the limit ass→`. Whenever the intensity profile lies below
the original intensity profiless=0d, the baseline level of the
output signal power spectrum is decreased so that output
noise is suppressed beyond some spectral frequency. Figure
2 shows the average intrinsic output noise intensitykGsVtdl
for fixed mean input signalsv0 as the size of the input signal

FIG. 1. The average intensity of intrinsic white noise,kGsVtdl,
for various mean input signalssv0d in the absence of state fluctua-
tions ss=0d and for two levels of state fluctuationsss=1,s=2d.
Units are arbitrary.
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fluctuationss increases. For small values ofs, the behavior
of kGsVtdl is completely determined byG9sv0d using the per-
turbative approximation given by Ref.[8],

kGsVtdl < Gsv0d + 1
2s2G9sv0d, s64d

so that concavity initially determines whether the average
noise intensity increases or decreases. Whenv0,1/Î2, the
function G is concave down so that the average intensity
initially decreases. Due to the specific example under con-
sideration, this behavior continues for larger values ofs, so
that the baseline of the power spectrum continually lowers.
Whenv0.1/Î2, G is concave up so that the average inten-
sity initially increases as the stationary distribution samples
states(nearV=0) where the noise intensity is high. However,
ass continues to increase, the stationary distribution samples
more extreme states where the intensity becomes asymptoti-
cally small. Consequently, the average intensity eventually
decreases. Thus, although concavity determines whether the
white component of the spectrum increases or decreases for
small values ofs, it becomes irrelevant for predicting noise
suppression for larger values ofs. The mean input levelv0
=1/Î2 corresponds to the point whereG9sv0d=0, so that the
fourth-order derivative, which is negative, determines that
the average noise initially decreases proportionally tos4.

We next consider the power spectrum under conditions
where noise suppression is possible, namely,
kGsVtdl,Gsv0d. Figure 3 plots typical power spectral densi-
ties corresponding tov0=0 ands=1. When the autocorrela-
tion time for the input fluctuations is too large(e.g.,t=0.5),
part of the spectral density is larger than the initial flat inten-
sity at Gs0d=1. However, for sufficiently large frequencies
v, the spectral intensity decreases and approaches the new
baselinekGsVtdl,Gsv0d, so that over sufficiently large spec-
tral bandwidths, the integrated spectral power will decrease
for any arbitrary autocorrelation timet. But when the auto-
correlation time is sufficiently small, the spectral intensity
lowers and widens according to the scaling in Eq.(40) until
it is uniformly smaller than the initial intensity(e.g., t

=0.25). The peak spectral intensity atv=0 corresponds to
the integrated scaleG0.

For those conditions where the average intensity of the
intrinsic output noise decreases, the inequality of Eq.(50)
determines a maximum autocorrelation time so that
G0,Gsv0d. Recall that the suppression of the asymptotic
scale of noiseG0 is equivalent to the power spectrum of the
output noise lying completely below the original white spec-
trum in the absence of input fluctuations. In Fig. 3, this maxi-
mum time would correspond to that timet where the spectral
density is tangent to the original spectral density atv=0.
Figure 4 provides a contour plot of this maximum autocor-
relation time as a function ofv0 and s. The heavy contour
line for t=0 separates the region where noise suppression is

FIG. 2. The average intensity of intrinsic white noise,kGsVtdl,
as a function of the size of input fluctuationsssd for three values of
the mean input signal(v0=0, v0=1/Î2, and v0=1.5). Units are
arbitrary.

FIG. 3. The power spectral intensity 2phYsvd as a function of
spectral frequencyv for a mean input signalv0=0 and input fluc-
tuations of sizes=1 where the input signal has autocorrelation time
t=0.5, t=0.25, and in the limitt↓0. The reference white spectral
density in the absence of input fluctuations is shown with a dotted
line fGs0d=1g. Units are arbitrary.

FIG. 4. A contour graph showing the largest possible autocorre-
lation time for the input fluctuations,t, as a function of mean input
signalv0 and input fluctuation sizes such that noise is suppressed,
G0,Gsv0d, as calculated in Eq.(50). Solid contours represent in-
crements ofDt=0.1, dashed contours represent increments ofDt
=0.05, and the contour fort=0 is shown in bold. Units are
arbitrary.
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possible from the region where noise invariably increases.
We see that in this example the maximum autocorrelation
time increases as the input fluctuations increase. Two factors
make this possible. First, as the fluctuationss2 increase, the
average intensity of the intrinsic noisekGsVtdl decreases to
zero. Second, the variation in the mean output signalHsVtd
increases ass2 increases. However, sinceHsVtd is bounded
between +1 and −1, added fluctuations at the input lead to
smaller and smaller increases in the variation ofHsVtd. Con-
sequently, for a given mean inputv0, the maximum autocor-
relation time will be bounded. Considering the other direc-
tion, as s↓0, the maximum autocorrelation time is
determined from the previous perturbation results[8] to be

t = −
G9sv0d

4H8sv0d2 , s65d

so long as the conditionG9sv0d,0 holds.

VI. CONCLUSION

In this paper, we have considered noise suppression in the
context of the power spectrum of an intrinsically noisy out-
put signal for a system in which the correlations at the input
decay exponentially. Because the intrinsic noise at the output
depends on the input signal only in terms of the intensity, the
autocovariance for the output signal and therefore the power
spectrum both undergo a simple decomposition. This decom-
position shows that the spectrum has a contribution arising
from the average intensity of the intrinsic noise plus a com-
ponent corresponding to the variation arising from the fluc-

tuating signal itself. Consequently, noise suppression is pos-
sible only when the average intensity of the intrinsic noise
decreases. That is, the increased fluctuations in the input sig-
nal must cause the system to visit more frequently those
states where the intrinsic noise has low intensity such that
the ergodic average of the intensity decreases.

In most examples where the presence of noise leads to an
increase in order, the noise interacts with some underlying
nonlinear dynamical system. For example, stochastic reso-
nance is often illustrated by considering how noise allows a
state to cross an energy barrier in synchrony with a weak
external signal[4]. Coherence resonance occurs when noise
pushes the state of a dynamical system across a threshold to
an excited state which then returns to the original ground
state[7]. In contrast, our example relies on the ergodicity of
the input signal, rather than nonlinear dynamics, to reduce
the noise in the output signal. That is, according to the
theory, there must be some input states where the intrinsic
intensity of output noise is decreased. As the input signal
samples its available phase space, it is driven into these low-
noise states sufficiently often such that the average intensity
of noise decreases relative to when the input signal is con-
strained to a smaller region of phase space.
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